

Percolation games: Game Theory interpretation for limit random evolutions

Luc Attia

Raimundo Saona

Bruno Ziliotto

Dieter Mitsche

Lyuben Lichev

Raimundo Saona

Percolation games

Simple game Generalizations

Let's play a game

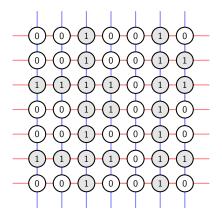


Figure 1: Average payoff game in random media

Dynamic

- \bullet State space is \mathbb{Z}^2
- Random reward function $G: \mathbb{Z}^2 \to \mathbb{R}$, where $G(z) \sim B(p)$, for $p \in [0, 1]$.
- All rewards are publicly known from the start
- Initial state is the origin (0,0)
- Infinite turn-based game
- At each turn, the corresponding player chooses where to move the state:
 - Max-player chooses up or down
 - Min-player chooses left or right

Simple game Generalizations

Rewards and values

For the *n*-stage game,

$$\gamma_n(\sigma,\tau) \coloneqq \frac{1}{n} \sum_{m=1}^n g_\omega(z_m).$$

$$\mathbf{v}_n \coloneqq \max_{\sigma} \min_{\tau} \gamma_n(\sigma, \tau) \, .$$

For the ∞ -stage game,

$$\gamma_{\infty}(\sigma, \tau) \coloneqq \liminf_{n \to \infty} \frac{1}{n} \sum_{m=1}^{n} g_{\omega}(z_m) \,.$$

 $v_{\infty} \coloneqq \sup_{\sigma} \inf_{\tau} \gamma_{\infty}(\sigma, \tau) \,.$

Simple game Generalizations

Question

Does this game have a limit value?

$$(V_n) \xrightarrow[n \to \infty]{?} v_\infty$$
.

Is v_{∞} a constant?

Simple game Generalizations

Model flexibility

Non-essential modelling choices

- Turn-based or concurrent
- I.I.D. random environment
- Actions of players

Essential choices

- Transitions are state and time independent
- State is a group

Simple game Generalizations

Question

What random stochastic games in infinite spaces have a limit value?

Introduction	Differential game
Motivation	Limit objects
Results	Necessary condition

Motivation from Analysis

ntroduction I Motivation I Results I

Differential game Limit objects Necessary condition

Continuous environment

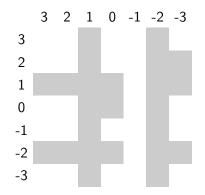


Figure 2: Continuous random environment

 Introduction
 Differential game

 Motivation
 Limit objects

 Results
 Necessary condition

Differential game

• Environment are random blocks of value 0 and 1

4

• Dynamic

$$\begin{cases} \dot{x}_1(t) = \tau(t) \in [0, 1] \\ \dot{x}_2(t) = \sigma(t) \in [0, 1] \\ x(0) = x_0 = (0, 0) \end{cases}$$

Payoff

$$\int_0^T g_\omega(x(s)) ds$$

• Value U(T, 0) is the (random) aggregation of rewards the max-player can get in T units of time

Differential game Limit objects Necessary condition

Game-theoretical question

Question

Does this game have a limit value?

$$\left(\frac{1}{T}U(T,0)\right) \xrightarrow[T\to\infty]{?} u.$$

Is u a constant?

Introduction Differential game Motivation Limit objects Results Necessary condition

Hamilton-Jacobi equations

The value function u satisfies

$$\begin{cases} \partial_t u(t,x) - g_\omega(x) - |\partial_y u(t,x)| + |\partial_x u(t,x)| = 0\\ u(0,x) = u_0(x) \end{cases}$$

which can be written as

$$\begin{cases} \partial_t u(t,x) + H_\omega(\nabla_x u(t,x),x) = 0\\ u(0,x) = u_0(x) \end{cases}$$

Consider the space-accelerated equation

$$\begin{cases} \partial_t u^{(T)}(t,x) + H_\omega(\nabla_x u^{(T)}(t,x), Tx) = 0\\ u(0,x) = u_0(x) \end{cases}$$

Differential game Limit objects Necessary condition

Analysis question

Question

Does this PDE have a limit solution?

$$\left(\frac{1}{T}U^{(T)}(Tt,x)\right)\xrightarrow[n\to\infty]{?} u(t,x).$$

What is the limit PDE?

$$\begin{cases} \partial_t u(t,x) + \overline{H}(\nabla_x u(t,x)) = 0\\ u(0,x) = u_0(x) \end{cases}$$

 Introduction
 Differential game

 Motivation
 Limit objects

 Results
 Necessary condition

Going back to games

Consider linear initial conditions u_0 . Then,

$$U^{(T)}(t,x) := \frac{1}{T} U^{(1)}(Tt,Tx) .$$

In particular, if H homogenizes,

$$u(1,0) = \lim_{T \to \infty} \frac{1}{T} U^{(1)}(T,0) \; .$$

Necessary condition for Analysis limit

For H_{ω} to have a limit, it is required that the random differential game has a limit value.

Question

What random differential games have a limit value?

Critical thresholds Forced games

Back to our game

Critical thresholds Forced games

Let's play a game

Question

Does this game have a limit value?

$$(V_n) \xrightarrow[n \to \infty]{?} v_\infty$$
.

Is v_{∞} a constant?

Critical thresholds Forced games

Critical thresholds

Theorem (Critical thresholds)

There exists $0 < p_0 < p_1 < 1$ such that

$$egin{array}{lll} (V_n) & \longrightarrow & 0 & & \forall p < p_0 \ (V_n) & \longrightarrow & 1 & & \forall p > p_1 \end{array}$$

Critical thresholds Forced games

Translation to directed percolation

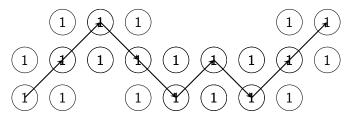


Figure 3: Structure that guarantees a value of one for the max-player

Percolation model

In the oriented percolation model,

- Each node may have two edges (northeast and southeast).
- Each edge may appear independently with probability p.

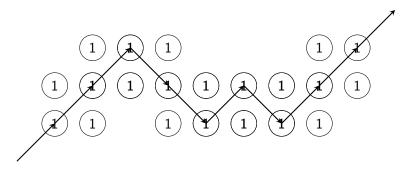
Theorem (Critical percolation parameter)

There exists $0.6298 \le p_c \le 2/3$ such that, in the percolation model with parameter $p > p_c$, the probability that there is an infinite path starting at the origin is strictly positive.

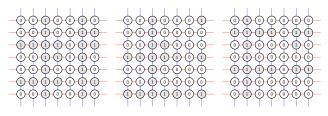
Technical extension

To prove our result on games, we must

- Deduce the existence of an infinite line somewhere in the grid.
- This infinite line is more or less horizontal.



Critical thresholds Forced games



•••

Figure 4: Game on $\mathbb{Z}^3,$ advancing in the time axis

Time introduces independence over time!

Critical thresholds Forced games

Convergence in probability

Theorem

For all $p \in [0, 1]$, there exists a constant limit value. Formally,

$$(V_n) \xrightarrow[n \to \infty]{\mathbb{P}} v_\infty \in \mathbb{R}.$$

- V_n concentrates on its expectation $\mathbb{E}(V_n)$
- $(\mathbb{E}(V_n)) \xrightarrow[n \to \infty]{} v_{\infty}$
- $(\mathbb{E}(V_n))_{n\in\mathbb{N}}$ converge fast to v_∞
- Therefore, V_n concentrates on v_∞

The proof technique does not generalize if there is a lot of dependence on the past.

Critical thresholds Forced games

We rely on Azuma's inequality.

Lemma (Concentration of martingales)

Let $(X_n)_{n\in\mathbb{N}}$ be a martingale and $(c_n)_{n\in\mathbb{N}}$ a real sequence such that, for all $n\in\mathbb{N}$, $|X_n-X_{n+1}|\leq c_n$ almost surely. Then, for all $n\in\mathbb{N}$ and $\varepsilon > 0$,

$$\mathbb{P}(|X_n - X_0| \ge \varepsilon) \le 2 \exp\left(\frac{-\varepsilon^2}{2\sum_{m=0}^{n-1} c_m^2}\right)$$

.

Critical thresholds Forced games

Proof: Concentration on $\mathbb{E}(V_n)$

We aim to show that $\mathbb{P}(|V_n - \mathbb{E}(V_n)| \ge \varepsilon)$ decreases with *n*. We will do so by defining a martingale and applying Azuma's inequality.

Proof: Concentration on $\mathbb{E}(V_n)$ (2)

For $m \in \mathbb{N}$,

 \bullet Define the $\sigma\textsc{-algebra}$

$$\mathcal{C}_m \coloneqq \sigma(\{G(z,i,j) : z \in Z_m, i \in I, j \in J\}).$$

• Note the inequality

$$|\mathbb{E}(V_n(0)|\mathcal{C}_m) - \mathbb{E}(V_n(0)|\mathcal{C}_{m+1})| \leq \begin{cases} \frac{1}{n} & m < n \\ 0 & m \ge n \end{cases}$$

٠

• Define the martingale

$$X_m \coloneqq \mathbb{E}(V_n(0)|\mathcal{C}_m).$$

Critical thresholds Forced games

Proof: Concentration on $\mathbb{E}(V_n)$ (3)

Then, applying Azuma's inequality,

$$\mathbb{P}(|V_n - \mathbb{E}(V_n)| \ge \varepsilon) = \mathbb{P}(|X_n - X_0| \ge \varepsilon)$$

$$\le 2 \exp\left(\frac{-\varepsilon^2}{2\sum_{m=0}^{n-1}(1/n)^2}\right)$$

$$\le 2 \exp\left(\frac{-\varepsilon^2}{2}n\right).$$

Therefore, V_n concentrates on $\mathbb{E}(V_n)$.

Critical thresholds Forced games

Proof steps

- V_n concentrates on its expectation $\mathbb{E}(V_n)$
- $(\mathbb{E}(V_n)) \xrightarrow[n \to \infty]{} v_{\infty}$
- $(\mathbb{E}(V_n))_{n\in\mathbb{N}}$ converge fast to v_∞
- Therefore, V_n concentrates on v_∞

Critical thresholds Forced games

Proof: Convergence of $\mathbb{E}(V_n)$

We aim to show that $\mathbb{E}(V_n)$ converges. We will study the subadditivity of $(n\mathbb{E}(V_n))_{n\geq 1}$.

Lemma (Convergence of subadditive sequences)

Let $\phi \colon \mathbb{N} \to (0, \infty)$ be an increasing function such that $\sum_{n=1}^{\infty} \phi(n)/n^2 < \infty$, and $(f(n))_{n \in \mathbb{N}}$ be a sequence such that, for all $n \in \mathbb{N}$ and all $m \in [n/2, 2n]$,

$$f(n+m) \leq f(n) + f(m) + \phi(n+m).$$

Then, there exists $L \in \mathbb{R}$ such that

$$\left(\frac{f(n)}{n}\right)\xrightarrow[n\to\infty]{} L.$$

Critical thresholds Forced games

Proof: Convergence of $\mathbb{E}(V_n)$ (2)

$$\begin{split} \mathbb{P}(\exists z \in B_{\infty}(0,2n) \quad |V_{n}(z) - \mathbb{E}(V_{n})| \geq \varepsilon) \\ &\leq \sum_{z \in B_{\infty}(0,2n)} \mathbb{P}(|V_{n}(z) - \mathbb{E}(V_{n})| \geq \varepsilon) \quad \text{(union sum)} \\ &= \sum_{z \in B_{\infty}(0,2n)} \mathbb{P}(|V_{n}(0) - \mathbb{E}(V_{n})| \geq \varepsilon) \quad \text{(space-homogeneity)} \\ &\leq |B_{\infty}(0,2n)|2 \exp\left(\frac{-\varepsilon^{2}}{2}n\right) \quad \text{(Azuma's inequality)} \\ &\leq (4n+1)^{3}2 \exp\left(\frac{-\varepsilon^{2}}{2}n\right) \quad \text{(Azuma's inequality)} \\ &=: \psi(n,\varepsilon) \,. \end{split}$$

Critical thresholds Forced games

Proof: Convergence of $\mathbb{E}(V_n)$ (3)

$$\mathbb{E}\left(\min_{z\in B_{\infty}(0,2n)}V_{n}(z)\right)$$

$$\geq 0\cdot\mathbb{P}\left(\min_{z\in B_{\infty}(0,2n)}V_{n}(z)\leq\mathbb{E}(V_{n})-\varepsilon_{n}\right)$$

$$+\left(\mathbb{E}(V_{n})-\varepsilon_{n}\right)\cdot\mathbb{P}\left(\min_{z\in Z^{(2n)}}V_{n}(z)\geq\mathbb{E}(V_{n})-\varepsilon_{n}\right)$$

$$\geq\left(1-\psi(n,\varepsilon_{n})\right)\cdot\mathbb{E}(V_{n})-\varepsilon_{n}$$

$$\geq\mathbb{E}(V_{n})-\left(\psi(n,\varepsilon_{n})+\varepsilon_{n}\right).$$

Now we can show that $n\mathbb{E}(V_n)$ is subadditive enough.

Proof: Convergence of $\mathbb{E}(V_n)$ (4)

By playing by blocks, we obtain, for $m \leq 2n$,

$$(m+n)\mathbb{E}(V_{m+n}) \ge m\mathbb{E}(V_m) + n\mathbb{E}\left(\min_{z\in Z^{(2n)}} V_n(z)\right)$$

$$\ge m\mathbb{E}(V_m) + n\mathbb{E}(V_n) - n(\psi(n,\varepsilon_n) + \varepsilon_n).$$

which is sufficient subadditivity taking an appropriate sequence $(\varepsilon_n) \xrightarrow[n \to \infty]{} 0.$

Therefore, there exists v_{∞} such that

$$\mathbb{E}(V_n)\xrightarrow[n\to\infty]{} v_\infty\,.$$

Critical thresholds Forced games

Proof steps

- V_n concentrates on its expectation $\mathbb{E}(V_n)$
- $(\mathbb{E}(V_n)) \xrightarrow[n \to \infty]{} v_{\infty}$
- $(\mathbb{E}(V_n))_{n\in\mathbb{N}}$ converge fast to v_∞
- Therefore, V_n concentrates on v_∞

Critical thresholds Forced games

Proof: Fast convergence of $\mathbb{E}(V_n)$

Recall that

$$\mathbb{E}(V_{2n}) \geq \mathbb{E}(V_n) - (\psi(n,\varepsilon_n) + \varepsilon_n).$$

Moreover, we can choose $\delta > 0$ such that

$$(\psi(n,\varepsilon_n)+\varepsilon_n)\in O(n^{-\delta}).$$

Critical thresholds Forced games

Proof: Fast convergence of $\mathbb{E}(V_n)$

By the telescopic sum, we get for $\ell>0$

$$\begin{split} \mathbb{E}(V_{2^{\ell}n}) &\geq \mathbb{E}(V_n) - \sum_{\ell'=0}^{\ell-1} \mathbb{E}\left(V_{2^{\ell'}n}\right) - \mathbb{E}\left(V_{2^{\ell'+1}n}\right) \\ &\geq \mathbb{E}(V_n) - \sum_{\ell'=0}^{\ell-1} K(2^{\ell'}n)^{-\delta} \\ &\geq \mathbb{E}(V_n) - n^{-\delta} \frac{K}{1-2^{-\delta}} \geq \mathbb{E}(V_n) + O(n^{-\delta}) \,. \end{split}$$

Therefore,

$$|v_{\infty}-\mathbb{E}(V_n)|\in O(n^{-\delta}).$$

Critical thresholds Forced games

Proof steps

- V_n concentrates on its expectation $\mathbb{E}(V_n)$
- $(\mathbb{E}(V_n)) \xrightarrow[n \to \infty]{} v_{\infty}$
- $(\mathbb{E}(V_n))_{n\in\mathbb{N}}$ converge fast to v_∞
- Therefore, V_n concentrates on v_∞

Critical thresholds Forced games

Proof: Concentration on v_∞

Recall that

•
$$|v_{\infty} - \mathbb{E}(V_n)| \in O(n^{-\delta})$$

• $\mathbb{P}(|V_n - \mathbb{E}(V_n)| \ge \varepsilon) \le \exp\left(\frac{-\varepsilon^2}{2}n\right)$

Therefore, there exists K > 0 such that

$$\begin{split} \mathbb{P}(|V_n - v_{\infty}| \geq \varepsilon + Kn^{-\delta}) \\ &\leq \mathbb{P}(|V_n - \mathbb{E}(V_n)| \geq \varepsilon + Kn^{-\delta} - |\mathbb{E}(V_n) - v_{\infty}|) \\ &\leq \mathbb{P}(|V_n - \mathbb{E}(V_n)| \geq \varepsilon) \\ &\leq \exp\left(\frac{-\varepsilon^2}{2}n\right). \end{split}$$

Critical thresholds Forced games

...

Convergence in probability

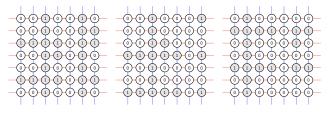


Figure 5: Game on $\mathbb{Z}^3,$ advancing in the time axis

Theorem

For all $p \in [0, 1]$, there exists a constant limit value. Formally,

$$(V_n) \xrightarrow[n \to \infty]{\mathbb{P}} v_\infty \in \mathbb{R}.$$

Critical thresholds Forced games

Extension: Forced plays

Let $\varepsilon > 0$. Define the set

$$Z_m pprox \left\{ z \in \mathbb{Z}^2 : ||z||_2 \leq m^{(1+arepsilon)1/2} - 1
ight\}.$$

Restrict the players from entering Z_m at stage m. Then, there exists $K, \delta > 0$ such that for all $\varepsilon > 0$

$$\mathbb{P}(|V_n-v_{\infty}|\geq \varepsilon+Kn^{-\delta})\xrightarrow[n\to\infty]{} 0.$$

Critical thresholds Forced games

Let's play a game

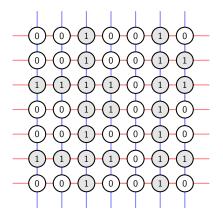


Figure 6: Average payoff game in random media

Critical thresholds Forced games

References I