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Let’s play a game
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Figure 1: Average payoff game in random media
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Dynamic

State space is Z2

Random reward function G : Z2 → R, where G(z) ∼ B(p), for
p ∈ [0, 1].
All rewards are publicly known from the start
Initial state is the origin (0, 0)
Infinite turn-based game
At each turn, the corresponding player chooses where to move
the state:

Max-player chooses up or down
Min-player chooses left or right
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Rewards and values

For the n-stage game,

γn(σ, τ) :=
1
n

n∑
m=1

gω(zm) .

vn := max
σ

min
τ
γn(σ, τ) .

For the ∞-stage game,

γ∞(σ, τ) := lim inf
n→∞

1
n

n∑
m=1

gω(zm) .

v∞ := sup
σ

inf
τ
γ∞(σ, τ) .
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Question
Does this game have a limit value?

(Vn)
?−−−→

n→∞
v∞ .

Is v∞ a constant?
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Model flexibility

Non-essential modelling choices
Turn-based or concurrent
I.I.D. random environment
Actions of players

Essential choices
Transitions are state and time independent
State is a group
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Question
What random stochastic games in infinite spaces
have a limit value?
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Motivation from Analysis
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Continuous environment
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Figure 2: Continuous random environment
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Differential game

Environment are random blocks of value 0 and 1
Dynamic 

ẋ1(t) = τ(t) ∈ [0, 1]
ẋ2(t) = σ(t) ∈ [0, 1]
x(0) = x0 = (0, 0)

Payoff ∫ T

0
gω(x(s))ds

Value U(T, 0) is the (random) aggregation of rewards the
max-player can get in T units of time
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Game-theoretical question

Question
Does this game have a limit value?(

1
TU(T, 0)

)
?−−−−→

T→∞
u .

Is u a constant?
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Hamilton-Jacobi equations
The value function u satisfies{

∂tu(t, x)− gω(x)− |∂yu(t, x)|+ |∂xu(t, x)| = 0
u(0, x) = u0(x)

which can be written as{
∂tu(t, x) + Hω(∇xu(t, x), x) = 0
u(0, x) = u0(x)

Consider the space-accelerated equation{
∂tu(T)(t, x) + Hω(∇xu(T)(t, x),Tx) = 0
u(0, x) = u0(x)
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Analysis question

Question
Does this PDE have a limit solution?(

1
TU(T)(Tt, x)

)
?−−−→

n→∞
u(t, x) .

What is the limit PDE?{
∂tu(t, x) + H(∇xu(t, x)) = 0
u(0, x) = u0(x)
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Going back to games

Consider linear initial conditions u0. Then,

U(T)(t, x) := 1
TU(1) (Tt,Tx) .

In particular, if H homogenizes,

u(1, 0) = lim
T→∞

1
TU(1) (T, 0) .
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Necessary condition for Analysis limit

For Hω to have a limit, it is required that
the random differential game has a limit value.

Question
What random differential games have a limit value?
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Back to our game
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Let’s play a game
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Question
Does this game have a limit value?

(Vn)
?−−−→

n→∞
v∞ .

Is v∞ a constant?
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Critical thresholds

Theorem (Critical thresholds)
There exists 0 < p0 < p1 < 1 such that

(Vn) −−−→n→∞
0 ∀p < p0

(Vn) −−−→n→∞
1 ∀p > p1
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Translation to directed percolation
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Figure 3: Structure that guarantees a value of one for the max-player
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Percolation model

In the oriented percolation model,
Each node may have two edges (northeast and southeast).
Each edge may appear independently with probability p.

Theorem (Critical percolation parameter)
There exists 0.6298 ≤ pc ≤ 2/3 such that, in the percolation
model with parameter p > pc, the probability that there is an
infinite path starting at the origin is strictly positive.
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Technical extension

To prove our result on games, we must
Deduce the existence of an infinite line somewhere in the grid.
This infinite line is more or less horizontal.
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Adding time
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Figure 4: Game on Z3, advancing in the time axis

Time introduces independence over time!
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Convergence in probability

Theorem
For all p ∈ [0, 1], there exists a constant limit value. Formally,

(Vn)
P−−−→

n→∞
v∞ ∈ R .
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Proof steps

Vn concentrates on its expectation E(Vn)

(E(Vn)) −−−→n→∞
v∞

(E(Vn))n∈N converge fast to v∞
Therefore, Vn concentrates on v∞

The proof technique does not generalize if there is a lot of
dependence on the past.
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Why transient?

We rely on Azuma’s inequality.

Lemma (Concentration of martingales)

Let (Xn)n∈N be a martingale and (cn)n∈N a real sequence such
that, for all n ∈ N, |Xn − Xn+1| ≤ cn almost surely. Then, for all
n ∈ N and ε > 0,

P(|Xn − X0| ≥ ε) ≤ 2 exp
(

−ε2

2
∑n−1

m=0 c2m

)
.
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Proof: Concentration on E(Vn)

We aim to show that P(|Vn − E(Vn)| ≥ ε) decreases with n.
We will do so by defining a martingale and applying Azuma’s
inequality.
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Proof: Concentration on E(Vn) (2)

For m ∈ N,
Define the σ-algebra

Cm := σ({G(z, i, j) : z ∈ Zm, i ∈ I, j ∈ J}) .

Note the inequality

|E(Vn(0)|Cm)− E(Vn(0)|Cm+1)| ≤

{
1
n m < n
0 m ≥ n

.

Define the martingale

Xm := E(Vn(0)|Cm) .
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Proof: Concentration on E(Vn) (3)

Then, applying Azuma’s inequality,

P(|Vn − E(Vn)| ≥ ε) = P(|Xn − X0| ≥ ε)

≤ 2 exp
(

−ε2

2
∑n−1

m=0(1/n)2

)

≤ 2 exp
(
−ε2

2 n
)
.

Therefore, Vn concentrates on E(Vn).
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Proof steps

Vn concentrates on its expectation E(Vn)

(E(Vn)) −−−→n→∞
v∞

(E(Vn))n∈N converge fast to v∞
Therefore, Vn concentrates on v∞
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Proof: Convergence of E(Vn)

We aim to show that E(Vn) converges.
We will study the subadditivity of (nE(Vn))n≥1.

Lemma (Convergence of subadditive sequences)

Let ϕ : N → (0,∞) be an increasing function such that∑∞
n=1 ϕ(n)/n2 <∞, and (f(n))n∈N be a sequence such that, for all

n ∈ N and all m ∈ [n/2, 2n],

f(n + m) ≤ f(n) + f(m) + ϕ(n + m) .

Then, there exists L ∈ R such that(
f(n)
n

)
−−−→
n→∞

L .
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Proof: Convergence of E(Vn) (2)

P(∃z ∈ B∞(0, 2n) |Vn(z)− E(Vn)| ≥ ε)

≤
∑

z∈B∞(0,2n)
P(|Vn(z)− E(Vn)| ≥ ε) (union sum)

=
∑

z∈B∞(0,2n)
P(|Vn(0)− E(Vn)| ≥ ε) (space-homogeneity)

≤ |B∞(0, 2n)|2 exp
(
−ε2

2 n
)

(Azuma’s inequality)

≤ (4n + 1)32 exp
(
−ε2

2 n
)

(Azuma’s inequality)

=: ψ(n, ε) .
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Proof: Convergence of E(Vn) (3)

E
(

min
z∈B∞(0,2n)

Vn(z)
)

≥ 0 · P
(

min
z∈B∞(0,2n)

Vn(z) ≤ E(Vn)− εn

)
+ (E(Vn)− εn) · P

(
min

z∈Z(2n)
Vn(z) ≥ E(Vn)− εn

)
≥ (1 − ψ(n, εn)) · E(Vn)− εn

≥ E(Vn)− (ψ(n, εn) + εn) .

Now we can show that nE(Vn) is subadditive enough.
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Proof: Convergence of E(Vn) (4)

By playing by blocks, we obtain, for m ≤ 2n,

(m + n)E(Vm+n) ≥ mE(Vm) + nE
(

min
z∈Z(2n)

Vn(z)
)

≥ mE(Vm) + nE(Vn)− n(ψ(n, εn) + εn) .

which is sufficient subadditivity taking an appropiate sequence
(εn) −−−→n→∞

0.
Therefore, there exists v∞ such that

E(Vn) −−−→n→∞
v∞ .
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Proof steps

Vn concentrates on its expectation E(Vn)

(E(Vn)) −−−→n→∞
v∞

(E(Vn))n∈N converge fast to v∞
Therefore, Vn concentrates on v∞
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Proof: Fast convergence of E(Vn)

Recall that
E(V2n) ≥ E(Vn)− (ψ(n, εn) + εn) .

Moreover, we can choose δ > 0 such that

(ψ(n, εn) + εn) ∈ O(n−δ) .
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Proof: Fast convergence of E(Vn)

By the telescopic sum, we get for ℓ > 0

E(V2ℓn) ≥ E(Vn)−
ℓ−1∑
ℓ′=0

E
(
V2ℓ′n

)
− E

(
V2ℓ′+1n

)
≥ E(Vn)−

ℓ−1∑
ℓ′=0

K(2ℓ′n)−δ

≥ E(Vn)− n−δ K
1 − 2−δ

≥ E(Vn) + O(n−δ) .

Therefore,
|v∞ − E(Vn)| ∈ O(n−δ) .
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Proof steps

Vn concentrates on its expectation E(Vn)

(E(Vn)) −−−→n→∞
v∞

(E(Vn))n∈N converge fast to v∞
Therefore, Vn concentrates on v∞
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Proof: Concentration on v∞

Recall that
|v∞ − E(Vn)| ∈ O(n−δ)

P(|Vn − E(Vn)| ≥ ε) ≤ exp
(
−ε2

2 n
)

Therefore, there exists K > 0 such that

P(|Vn − v∞| ≥ ε+ Kn−δ)

≤ P(|Vn − E(Vn)| ≥ ε+ Kn−δ − |E(Vn)− v∞|)
≤ P(|Vn − E(Vn)| ≥ ε)

≤ exp

(
−ε2

2 n
)
.
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Convergence in probability
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Figure 5: Game on Z3, advancing in the time axis

Theorem
For all p ∈ [0, 1], there exists a constant limit value. Formally,

(Vn)
P−−−→

n→∞
v∞ ∈ R .
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Extension: Forced plays

Let ε > 0. Define the set

Zm ≈ {z ∈ Z2 : ||z||2 ≤ m(1+ε)1/2 − 1} .

Restrict the players from entering Zm at stage m. Then, there
exists K, δ > 0 such that for all ε > 0

P(|Vn − v∞| ≥ ε+ Kn−δ) −−−→
n→∞

0 .
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Let’s play a game
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Figure 6: Average payoff game in random media
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